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Fluctuations of the tensor order-parameter modes in a cholesteric liquid crystal
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We use a Landau—de Gennes free energy to calculate the fluctuations of the five independent modes of the
tensor order parameter for a cholesteric liquid crystal. Our results include, as a limiting case, the two classical
director modes, known as the twist mode and the “umbrella” mode. We find, however, in contrast to the
classical director model, that there can be substantial temperature dependence to the umbrella mode, as well as
three additional modes near the transition to the isotropic phase. We comment on a recent experiment that
suggests that two of these additional modes may have already been detected.
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INTRODUCTION magnitude of the “tilt angle” is quite different in the two

The first calculations of di f ions in a choles- "0 ae>:
e first calculations o Irector fluctuations in a choles- The twist mode fluctuations diverge at pOinth%.nd

teric liquid crystal were done quite some time @93]' It =20y on theq, axis. In other words a twist modulation whose
was shown thec_)retlcally that there are two prmmpal types 0E)eriodicity is half that of the helix is a Goldstone mode,
director fluctuation modes. When a fluctuatiam of the di- since such a mode would constitute a uniform rotation or

rectorn Is perpendlcular o th? helical wave vecuy, the ._translation of the helical structure. In practice finite size ef-
deformation is known as a twist mode and is illustrated Nt (s |imit the observation of the full divergence

Fh'g‘ 1rgb)' Thflshm(;]d?_ m%y lbe thoughtTog asa mgdulatlon r?f The director mode model is a two-component description
the phase of the helicoidal structure. The second case, WhegR 1o fiyctuations. In actuality the total number of modes
on is parallel todp, is refer(ed to as eﬁher a comcgl mode Orcapable of showing fluctuations is five, the number of inde-
an umbrella mod.e and is ;hown in Flg(cl. This mode. pendent components of the tensor orientational order param-
involves a modulation of the tilt of the director away fromits oo There is often important information to be learned by
preferre_d direction _perp_endlcular to the hehc_al axis. The tw%oking at the “extra” three modes, even if the strength of
rrllodeshnluhstlr_ateld In FC')g' 1 bOtT h?]ve the|rdwaveh VEClOTSyeir fluctuations is not particularly large. In a previous the-
along t E elical axis. Une can aséc_) ?ve MOJES WNOSE WaYfaticy| papef5] it was shown how the five modes fluctuate
vectors have components perpendiculaggobut it turns out in nematic liquid crystals in a wide variety of circumstances,

that the analysis of these modes is much more complicat mcluding in the presence of external fields. Here we propose

and has only been done for the case where the wave Vectorys 4, the same thing for cholesteric liquid crystals of various
much less tharg,. All other studies have treated only the

situation where the wave vector is along the helix and the —_——— ——— —— —
discussion in this paper will be limited to this case as well. SHd4Hd4d4d 44444 Yy y9vy
The average square fluctuations for the two director R T T R T
modes were found by applying the equipartition theorem to FFFIFF Frrvyy
the Frank free energy for director distortions with the result — — — FFFFF — — —
[1-4] 44444 ——— AAaAaA4
kT R —|—'—|—|—| T TTTT
<|am<k>|2>:@, k=q+2qy (twisy,  (1a) FrREFEE L RRRKK
i I I I B i A e e |
kT R [ I I e e I
o _ B _ R o
(|ony (k)| >_—K3qS+K1k2' k=qtqo (umbrellg. FFEFF —m— — vrryyv
—— — A4 — — =
(1b)
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Here the subscripts’” and “|” represent, respectively, per- T TTTTT
pendicular and parallel to the helical axis. The scattering Frrr FRFRFFE ik kk
wave vector is denoted liyand that of the helix byg. Thus, - ——— — T/ T/
the umbrella mode reaches its maximum at poigtand -g,
along theq, axis in reciprocal space, or in other words when @ ®) ©

the tilt perturbation is commensurate with the helix period-
icity, as in Fig. 1c). In this case the orientational order is  FIG. 1. Schematic representations(ef a uniform cholesteric,
essentially the same as in a sme@icphase, although the (b) a twist mode, andc) a conical or “umbrella’ mode.
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chiralities. The case of cholesteric liquid crystals in externalight scattered from the director modes is expected to be
fields will be covered separately. more or lessndependent of temperatuas far as the director

It is an interesting fact that the first experimental attemptmode picture is concerned. Our results obtained via the ten-
to verify the results of Eqg1) did not take place until nearly sor mode description show that while the twist mode is es-
three decades after their theoretical prediction. Boesadil.  sentially temperature independent, the other modes have
[6] reported the results of light scattering measured at differtemperature dependences that can be substantial, particularly
ent scattering angles but a fixed temperature that are claiméd the vicinity of the transition to the isotropic phase. The
to be consistent with the predictions of E¢s). We believe, reason for these differences is that the director picture is
however, that there is a major problem in their interpretatioressentially a uniaxial model requiring only one parameter to
since the data that they identify with the umbrella mode re-describe the degree of order, whereas the tensor description
quire that the bend elastic constant be more than three ordeis a biaxial model requiring two parameters to describe the
of magnitude larger than the splay elastic constant, which isrder. It is the interaction of the two order parameters in the
totally unexpected on physical grounds. We suggest in a latgensor model that accounts for the temperature dependence.
section that these data are more likely due to one of the other In the next section we review what is already known
“extra” tensor modes. Furthermore, Borsati al. say that about the tensor model for the cholesteric liquid crystal and
they have unreported data associated with an unidentifieiis transition to the isotropic phase. The main conclusions to
“fast” mode, which we believe to be yet another one of thebe shown are the temperature dependences of the order pa-
five tensor modes. Clearly the multiplicity of observed rameters and the temperature-chirality phase diagram for the
modes calls for a description that goes beyond the two-modeholesteric phase. Brazovskii and Dmetri@y were the first
director description. to present these results, which by now have been elaborated

One particularly interesting feature of the tensor order paupon by many others. The section following that gives addi-
rameter description of the cholesteric liquid crystal is that thdional results, namely, our predictions for the fluctuations of
predictedtemperaturedependence of the modes is in generalthe five order parameter components or modes. We compare
much more dramatic than when the director mode picture ignd contrast these predictions with those of the director
employed, particularly when large chiralities are involved.model throughout, and at the end with the experimental data
Considering, for example, the results of E(l, we see that that presently exist.
the main temperature dependence of the director modes
stems from that of the elastic constants appearing in the de-
nominators. In mean field theory it is expected that the elas-
tic constants will all be proportional to the square of the
order parameter. Now the intensities of scattered light will We take, as usual, the order paramégy to be the an-
also be proportional to the square of the order parametdasotropic part of the dielectric tensor, which we represent as
multiplied by the appropriatésn?). Thus the intensity of [5]

FREE ENERGY, ORDER PARAMETER, AND
TEMPERATURE-CHIRALITY PHASE DIAGRAM:
REVIEW OF KNOWN RESULTS

1 1 1 1
= —=Q(F) + =Py(r Palr T
SO0+ =Pi) 5D RO
1 1 1 1
r= T=Par = —=Q(r) = —=Py(r —=R,(") |. 2
Qp(F) \"E 5(F) \r’GQ(j 2 1(P) ° () (2
1 1 2
- r - r —=0Qlr
RO R0 Nl
[
In Landau theory the free energy density is expanded as &mperature dependence, A=Ay(T-T), while

power series in this order parameter, which to fourth orderA,, T, L, ¢y, B, andC are assumed to be constant. The free
and in the one-elastic-constant approximation, looks like energy for the helicoidal structure is obtained by substituting
Q(N=Qy, P1=Pycoq20qyz+ ¢), andP,=Pysin(2gyz+ ¢) into
1 1 Egs.(2) and(3), whereQ, and P, are (temperature depen-
f= EAQQBQBH + ELQQBJQBW_ 2100 apyQaeuQuup.y den) constants an@ is an arbitrary phase anglBy may be
seen to be a measure of how well the molecules are aligned
2 1 along the local director that is perpendicular to the helix and
- — - 2
\/;BQ"“;QBVQW * 4C(Q“5QB“) ' ®) whose direction changes as one moves along tfiieection.
Qo, Which is invariably negative, is a measure of how well
Here, as usual, the coefficieAtis assumed to have a linear the molecules poinaway from the helical axis. If the cho-

031707-2



FLUCTUATIONS OF THE TENSOR ORDER-PARAMETER. PHYSICAL REVIEW E 71, 031707(2009

lesteric structure were locally uniaxial, then the parameters 5.0 T T T T
P, andQ, would be related by3=3Q%. When there is twist, < /
however, there is locdbiaxiality and this relationship does 4o L £ /' J
not hold[see Eq.(6) below]. § ,

It is useful to cast Eq(3) into dimensionless form by £ ,«’
scaling out a factor oB/C from Q,; and a factor oB*/C3 SOF oo , ]
from f. In this manner the dimensionless free energy density - \ /
for the helicoidal structure in equilibrium is found to be 20} g 4

— 1 2 2 1 2 2\2 1 3 2 1 2p2 fi}l":’lf‘;‘em
feq= Et(Qo +Pg + Z(Qo +Pgy)” - éQo +P5Qo— 5K Po- 10 b Crystal 4
(4) t=2/90—0- PO ST S R S S P GH S T S U S S SSRGS R S S St
0.0 0.5 1.0 15 2.0 2.5

In the above a reduced temperattreAC/B? and a reduced
chirality paramete=2€q, are defined, wheré= \LC/B.
Minimizing this expression with respect to its two order pa- g, 2. Temperature vs chirality phase diagram for the

rameters yields cholesteric-isotropic transition. The solidashed line represents a
first (secondl order transition.

tQo+ Q5+ PiQo— Q5+ P3 =0 (5a)

and 1 20 2
Qo= —{KZ— 2- \/K4+4K2+ — +16e - —(6x% + 4)%2
Po(t + P+ Q5+ 2Qp— «) = 0. (5b) 8 ° °
2
Eliminating the temperature between these two equations (k*<2). (1)
shows that the relationship The temperature behavior Bf, can then be obtained through
5 o use of (6). From these equations we can see that at the
Po=Qo(3Qo =« ®  ticritical point (k?=2)Qu=-3&2 and Py~ &'%. Thus P, is

is always valid. Equatiof6) may in turn be substituted back seen to be the primary orqer parameter with the usual mean
into Eq. (5) to obtain an expression that may be solved tofield tricritical exponeni8=3, while Q, is seen to be a sec-
give the temperature dependence of the order parar@gter ondary order parameter. Likewise, along the line of critical

In this manner we find points (k*>2)P, has the usual mean field critical exponent
1 ,8:% whereadQ, varies linearly withe.
t)==(-2+K2— K+ 122~ 16+ 4). 7 Atfter further consideration Brazovskii and Dmetrig]
ot 8( T ) @ realized that this tricritical point and line of second order

. . transitions would not actually be reached because at chirali-
Then Eq.(7) may be used with Eq6) to obtain the tempera- yjes of «~ 1 and beyond muitiply periodic structures, which
ture depend.ence (HO' . . today are called the “blue phasd€], would intervene. That
As was first noticed by Brazovskii and Dmetrig¥], @ g 4ithough the cholesteric liquid crystal may act as though it
careful examination of the free energy expressiimeveals i 5or0aching a second order transition to the isotropic
fchat the_: transition from the helicoidal cholesteric phase to th%hase, it will undergo a first order transition to one of the
isotropic phase becomes second order #6r2 and takes e phases before it reaches the hypothetical second order
place at a temperature transition. The calculations of the fluctuations presented here
2 (2=2). ®) are stiI_I useful up to the point that a bl_ue_phase is encoun-
tered; indeed there are reasons for believing that these fluc-
If k><2, the transition is first order and takes place at auations may actually play a dynamic role in the creation of

t.=«

temperature the blue phases. Also, as we shall show in a separate paper,
— in certain circumstances the application of a large electric
11 V2 field can quench the blue phases and a true second order
_T .z .2,V 2312 (2
te= 9 * 2K * 36(2 * 3 (k*<2). 9 transition can be reached. Therefore, for all these reasons, the

calculation of the fluctuations at the approach to the
Figure 2 shows the phase diagram for the isotropiccholesteric-isotropic transition are of more than just aca-
cholesteric transition, including the tricritical point where demic interest and so we proceed.
this changeover takes place.
Defining e=t.—t, the distance in temperature from the ORDER-PARAMETER FLUCTUATIONS:
transition, gives more useful expressions for the temperature PRESENT RESULTS '
variations of the order paramet€y:
Now that the local minimum of the free energy has been
Qo= }[Kz —2- \;m] (K2=2), (10 found we need to express _the free energy to_se_cond_c_)rder in
8 fluctuations about this minimum. This analysis is facilitated
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by switching representations from one where the coordinate w— \\.

axis are fixed in space, as in E@), to one in which thg — .\

reference axes rotate in the same way as does the helix, sc ————

that the unperturbed structure always appears uniform. Ac- ' \———

cordingly we define - /
| =y

A

Q(r) =Qg+ 8Q(r),

\\tee f/

g

Pi(r) =Pg+ 6P(r), _—

— —

[ B
PL(1)=0+6P, (), — .

—— ey
Ry(r) =0+ 8Ry(r),
@) ®) ©

Ro(r) =0+ Ry(r). (12)
. : . FIG. 3. Schemati tati th t holes-
Here we see thafQ and 6P, are fluctuations in thenagni- ©. 3. Schematic representation (@f the unperturbed choles

. teric, (b) a primary umbrella modR,, and(c) a secondary umbrella
tudesof the two measures of alignmer@ and P, respec- modeR,. The primary director is parallel to the long axis of the

tively. The_quantityal_DL is a local fluctuation_in thehased parallelepiped; the secondary director is parallel to the intermediate
of the helix or, equivalently, a small rotation of the local 45

director perpendicular to the helix; it is, in other words, a

twist mode. Finally,6R; and R, are both umbrella modes.

There are two umbrella modes because the local biaxialityAFq = }(t +3Q2+ P2 - 2Qq + £%3)|5Q(K) 2 + }(t + QR

implies that there are two director®;, the primary one 2 2

pointing along the alignment direction of the long axes of the _ 1

molecules, and a secondary oRg, perpendicular to the first + 3P+ 2Qo — k2 + £2k?)| 6P, (K)|? + E(t +Q3+ P

and also to the helical axis. Each of these directors can tilt, or

develop a conical structure, as shown in Fig. 3, and so there ~ 1

are two independent modes. +2Qq — k% + £%K?)| 5P (k)| + E(t +Q5+P;-Qo
As mentioned earlier, we will only be considering the case

where the scattering wave vectgris along thez direction.

Accordingly, 8Q,s will be considered to be a function af

only and can then be expressed in terms of its Fourier coef-

- 1 ~ 1
ficients as + \Epo‘ ZK2+ €2k2>|6R2(k)|2 + E(ZQOPO +2Py)

1 ~ 1
=3Py - ZK2+€2k2>|5R1(k)|2+ 5('” Q5+ P5-Qo

2Qupl2) = 2 Rue (13 X[5Q(K) 5P} (K) + 8Q' () 3P (K)]. (14

) ) The equipartition theorem may then be employed to find the
When Eq.(13) is entered into the free energy densiyand  thermal averages of the fluctuations. The coefficients appear-

sion that results to second order @,z is previously developed and thus we obtain

keT

(5P (0P = 2.

(15

keT

(| oRy AR = (16)

.3 !
=3Q0  \3Qo(3Qe— ) + 7k + €%

ke T[2Q0(3Qg — #) + £%k?]
(3Qo = K)(k? = 8Qy— 2) +[8QF — 2(k? + 2)Qp + k1€ + £ K

Q(K)|2) = , 17
(|Q(K)[*) 200 (17)

031707-4



FLUCTUATIONS OF THE TENSOR ORDER-PARAMETER. PHYSICAL REVIEW E 71, 031707(2009

ks T[2Qo(Qo = 2) + k2 + (%K?]

D (1) [2) =
(|oPy(k)|) = 2Q4(3Qq - k) (K2 - 8Q, - 2) + [8Q(2) - 2(K?+ 2)Qq + K210 + LK

(18)

The fluctuations ofP, are, as in the director-mode picture, Recently Longeet al.[10] have considered what happens in
inverse proportional t&? and relatively insensitive to tem- the isotropic phase when the harmonic approximation breaks
perature. The fluctuations Ry, the primary umbrella mode, down and coupling between the five, formerly independent,
are likewise as given by the director model if one is far frommodes ensues; this is their model for the transition from the
the cholesteric-isotropic transition and/or the chiraliis ~ ordinary isotropic phase to the amorphous phase known as
small. That is, the expansion of E(.6) gives BPIII. It would be interesting to see if mode coupling would
also modify the results presented here for the cholesteric
phase.

From Eq.(18) it may easily be seen th&; plays the role
of the “soft mode” in that its fluctuations diverge when the
which is equivalent to Eq(1b) in the one-elastic-constant second transition is approached:lgJ/4e at the tricritical
case. If, however, the cholesteric-isotropic transition isPoint (x*=2) and askgT/2¢ along the line of critical points
nearby and/or the chiralitk is large, then the situation is («<*>2). That theamplitude as well as the phasé the pri-
quite different: the primary umbrella fluctuatiomecrease mary order parameter should diverge suggests that defects
substantially as the temperature is increased. The secondangay eventually play an important role as the transition is
umbrella mode has just the opposite behavior: it is normallyapproached. The defects most commonly seen in cholesterics
very weak but becomes much larger when cholestericare the\ and 7 singularities, whose cores resemble the
isotropic transition is approached and/or the chiraktys  double-twisted structures found in the blue phases. Perhaps
large. We show these behaviors, as well as that for all of théhen there is a dynamical aspect to the formation of the blue
other modes, in Fig. 4 for a chirality of=0.7, which has a phases in addition to the energetics of static structures that
first order phase transition and in Fig. 5 for a chiralitysof has been considered up to now.
=1.8, which has a second order phase transition. Here we TheQ mode fluctuation$Eq. (17)] also grow as the tran-
plot kT divided by each average squared fluctuamalu-  sition is approached, dgT/[16e+(x*~2)?]*2 but as may
ated at its peak (k0). be seen from this expression it diverges at the tricritical point

Although they are not the focus of the present study, thenly (k°=2). The critical exponent o% that it has at the
results for the isotropic phase are also included in Figs. 4 antficritical point is another indication thad is a secondary
5 for the sake of completeness. These are easily obtained layder parameter.
applying the equipartition theorem to Ed.4) after first set- It is important to realize that although the fluctuations of
ting Qu and Py equal to zero. Calculations of this sort were all five modes peak at=0, these peaks are actually sepa-
first done by de Genng$] and then elaborated on by many rated in reciprocal space. Thus tRe andP, modes peak at
others in the tensor fomulation including especially Horn-q= +2q,, the umbrella modeR; andR, atq= +q,, and theQ
reich and Shtrikmai9], who also discussed scattering from mode atq=0. This separation can help somewhat in the ex-
the blue phases, but not from the cholesteric phase itselperimental detection of the different modes, although there is

still considerable overlap between some of the modes. This is

~ KgT
(RO = oz, e (“3>#). (A9

sl Cholesteric Isotropic | Cholesteric Isotropic
8l i
—AQ
6 5 R
AT T A R|
Eb N e =l > - | [ R,
g 4 Gz x=1.8 L1
v 4r - 2 ]
o \ _
- RS
v =
2L - i
. .-
\ s
0 0 1 L hl e 1
3 -3 2 A 0 1
t-t t-t

FIG. 4. Inverse of the average squared fluctuations of the order FIG. 5. Inverse of the average squared fluctuations of the order
parameter components for a chiralitg=0.7) having a first order = parameter components for a chiralitg=1.8 having a second or-
transition. der transition.
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<[3Q, ,>/k,T
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N

FIG. 6. The average squared fluctuations of the order paramet
components for a chiralityx=0.7). The temperature from the tran-

sition ise= (a) 0.2, (b) 0.1, and(c) 0.
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THE LOW CHIRALITY LIMIT: COMPARISON
TO EXPERIMENT

The experiment of Borsakt al. [6] was performed on a
nematic doped with a small amount of chiral material, giving
a cholesteric with a pitch of about 10n. Unfortunately, a
cholesteric with a pitch this large does not really display
many of the characteristic features that would be found in a
more typical material having a pitch comparable to the wave-
length of light. The separation of the mode peaks in recipro-
cal space, for example, is not at all evident; the smat|ést
the experiment is about three orders of magnitude larger than
q(z), so the distinction betweemandk is irrelevant. Nonethe-
less, the analysis we have presented here should still apply to
the experiment; we have only to take the limit wherer qg
is zero. In this limit, and to first order ik?, we have forkgT
divided byeach average squared fluctuation

kgT

— = €2k2, (20)
(|R(K) [
All(LT ~ — 6QO+ €2k2, (21)
(|Rx(K)?)
2
fel_ 2(4Q+ 1) + 4%+ 2%+ 1) 2?0 *Dene
(|3Q(K)|? 3Q%
(22
kgT - 6Qp(4Qp+ 1) N (4Q3+2Qy + 7)€2k2
(5P (K Qo =2 (Qo-27?
(23

So in this limit we see from Eq20) that the primary um-
brella mode is indistinguishable from the twist mode, which
is still given by Eq.(15. The second mode identified by
Borsali et al. must therefore be one of the other modas
must be the third “fast mode” discussed briefly by them
The only alternative, the one actually considered by Borsali
et al, is that the produchqg staysfinite as q, becomes
negligible, which would require the bend elastic constant to
become anomalously large for no apparent reason.

Most likely the second mode that Borsali al. have dis-
covered is thé®, mode. We base this upon the fact that it is
this mode that lies closest to the twist and primary umbrella
épodes for the most likely ranges of parameters. In the range
of —1<Qy<-1/3 (the smallest negative value allowed for
x=0) the P, mode is always the mode that is closest to the
twist and primary umbrella modes. For an order parameter of
Qo=-1 theQ, P;, andR, modes are coincident; they have
the same slopes and the same intercept of 6. This intercept

demonstrated in Fig. 6 in which we plot the mean-squareg|aces these modes considerably farther away from the twist
fluctuations vy for a Chlrallty of k=0.7 and three different and primary umbrella modes than what is found in the ex-

temperatures. Note that t® modes atg=+q, overlap to

periment. In Fig. 7 we show a plot of the inverses of the

such an extent that they are never resolved as two separaigrious modes versué€’k? for a Q, value of —0.4, which

peaks.

seems to correspond much more to the experimental situa-
tion. It is not possible to give an exact comparison between
our results and the experimental data, however, because what
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3 T T T measurements of the modes and th&isslopes at different
temperatures should provide significant new information to
enable the more positive identification of each mode.

CONCLUSION

N
L]
1

The tensor order-parameter description of fluctuations in a
cholesteric liquid crystal complements and extends the
............... director-model theory. It shows that far from the transition to
Py - the isotropic phase the most dominant modes by far are the
__________ twist and umbrella modes and that their temperature depen-
_____________ dences are approximately as given by the director model. As
[ P,,R the isotropic phase is approached, however, the temperature
dependences of the twist and umbrella modes begin to differ
substantially from the predictions of the director model. At
0.0 0.1 02 03 04 the same time the strengths of the other three fluctuation
i modes, not included in the director model, grow substan-
tially. There may be some interesting physics to be learned
FIG. 7. Inverse of the average squared fluctuations of the ordelpy measuring all five of these modes, not just at the transi-
parameter components V8k? for zero chirality andQ,=-0.4(¢ tion to the isotropic phase but also at transitions to the blue
=0.3597. phases or even at transitions to smectic liquid crystals or
other lower temperature phases. To some extent the five
we calculate is related to the intensities of light scatteringmodes may be singled out experimentally by virtue of their
whereas the experiment has measured relaxation rates, whidifferent angular dependences, although this may prove dif-
are related to the intensity autocorrelation function. The latficult because they are so broad. In principle, polarization
ter are scaled to the former by combinations(ahknowrn) selection of incoming and scattered light, using both linear
viscosity coefficients, but this probably should not changeand circular polarizers and analyzers, can also be used to
the relative importance of the different modes by very muchseparate the modes to some extent at least, but multiple scat-
Also, the value of the lengtlf is not known, but if we as- tering may complicate this method. Finally, as was done in
sume that it is 200 A then the range of tié? shown in the  [6], the modes may be resolved in the time domain especially
figure corresponds to the experiment. if they have very different relaxation rates. A combination of
If Fig. 7 is an accurate guide, then the third “fast mode”all these methods may be needed for an unambiguous eluci-
detected by Borsalet al. is probably theQ mode. More dation.

k,T/<5Q,, ">
el
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