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We use a Landau–de Gennes free energy to calculate the fluctuations of the five independent modes of the
tensor order parameter for a cholesteric liquid crystal. Our results include, as a limiting case, the two classical
director modes, known as the twist mode and the “umbrella” mode. We find, however, in contrast to the
classical director model, that there can be substantial temperature dependence to the umbrella mode, as well as
three additional modes near the transition to the isotropic phase. We comment on a recent experiment that
suggests that two of these additional modes may have already been detected.
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INTRODUCTION

The first calculations of director fluctuations in a choles-
teric liquid crystal were done quite some time agof1–3g. It
was shown theoretically that there are two principal types of
director fluctuation modes. When a fluctuationdn of the di-
rector n is perpendicular to the helical wave vectorq0, the
deformation is known as a twist mode and is illustrated in
Fig. 1sbd. This mode may be thought of as a modulation of
the phase of the helicoidal structure. The second case, where
dn is parallel toq0, is referred to as either a conical mode or
an “umbrella” mode and is shown in Fig. 1scd. This mode
involves a modulation of the tilt of the director away from its
preferred direction perpendicular to the helical axis. The two
modes illustrated in Fig. 1 both have their wave vectors
along the helical axis. One can also have modes whose wave
vectors have components perpendicular toq0, but it turns out
that the analysis of these modes is much more complicated
and has only been done for the case where the wave vector is
much less thanq0. All other studies have treated only the
situation where the wave vector is along the helix and the
discussion in this paper will be limited to this case as well.

The average square fluctuations for the two director
modes were found by applying the equipartition theorem to
the Frank free energy for director distortions with the result
f1–4g

kudn'skdu2l =
kBT

K2k
2, k = q ± 2q0 stwistd, s1ad

kudniskdu2l =
kBT

K3q0
2 + K1k

2, k = q ± q0 sumbrellad.

s1bd

Here the subscripts “'” and “i” represent, respectively, per-
pendicular and parallel to the helical axis. The scattering
wave vector is denoted byq and that of the helix byq0. Thus,
the umbrella mode reaches its maximum at pointsq0 and −q0
along theqz axis in reciprocal space, or in other words when
the tilt perturbation is commensurate with the helix period-
icity, as in Fig. 1scd. In this case the orientational order is
essentially the same as in a smectic-C* phase, although the

magnitude of the “tilt angle” is quite different in the two
cases.

The twist mode fluctuations diverge at points 2q0 and
−2q0 on theqz axis. In other words a twist modulation whose
periodicity is half that of the helix is a Goldstone mode,
since such a mode would constitute a uniform rotation or
translation of the helical structure. In practice finite size ef-
fects limit the observation of the full divergence.

The director mode model is a two-component description
of the fluctuations. In actuality the total number of modes
capable of showing fluctuations is five, the number of inde-
pendent components of the tensor orientational order param-
eter. There is often important information to be learned by
looking at the “extra” three modes, even if the strength of
their fluctuations is not particularly large. In a previous the-
oretical paperf5g it was shown how the five modes fluctuate
in nematic liquid crystals in a wide variety of circumstances,
including in the presence of external fields. Here we propose
to do the same thing for cholesteric liquid crystals of various

FIG. 1. Schematic representations ofsad a uniform cholesteric,
sbd a twist mode, andscd a conical or “umbrella” mode.
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chiralities. The case of cholesteric liquid crystals in external
fields will be covered separately.

It is an interesting fact that the first experimental attempt
to verify the results of Eqs.s1d did not take place until nearly
three decades after their theoretical prediction. Borsaliet al.
f6g reported the results of light scattering measured at differ-
ent scattering angles but a fixed temperature that are claimed
to be consistent with the predictions of Eqs.s1d. We believe,
however, that there is a major problem in their interpretation
since the data that they identify with the umbrella mode re-
quire that the bend elastic constant be more than three orders
of magnitude larger than the splay elastic constant, which is
totally unexpected on physical grounds. We suggest in a later
section that these data are more likely due to one of the other
“extra” tensor modes. Furthermore, Borsaliet al. say that
they have unreported data associated with an unidentified
“fast” mode, which we believe to be yet another one of the
five tensor modes. Clearly the multiplicity of observed
modes calls for a description that goes beyond the two-mode
director description.

One particularly interesting feature of the tensor order pa-
rameter description of the cholesteric liquid crystal is that the
predictedtemperaturedependence of the modes is in general
much more dramatic than when the director mode picture is
employed, particularly when large chiralities are involved.
Considering, for example, the results of Eqs.s1d, we see that
the main temperature dependence of the director modes
stems from that of the elastic constants appearing in the de-
nominators. In mean field theory it is expected that the elas-
tic constants will all be proportional to the square of the
order parameter. Now the intensities of scattered light will
also be proportional to the square of the order parameter
multiplied by the appropriatekdn2l. Thus the intensity of

light scattered from the director modes is expected to be
more or lessindependent of temperatureas far as the director
mode picture is concerned. Our results obtained via the ten-
sor mode description show that while the twist mode is es-
sentially temperature independent, the other modes have
temperature dependences that can be substantial, particularly
in the vicinity of the transition to the isotropic phase. The
reason for these differences is that the director picture is
essentially a uniaxial model requiring only one parameter to
describe the degree of order, whereas the tensor description
is a biaxial model requiring two parameters to describe the
order. It is the interaction of the two order parameters in the
tensor model that accounts for the temperature dependence.

In the next section we review what is already known
about the tensor model for the cholesteric liquid crystal and
its transition to the isotropic phase. The main conclusions to
be shown are the temperature dependences of the order pa-
rameters and the temperature-chirality phase diagram for the
cholesteric phase. Brazovskii and Dmetrievf7g were the first
to present these results, which by now have been elaborated
upon by many others. The section following that gives addi-
tional results, namely, our predictions for the fluctuations of
the five order parameter components or modes. We compare
and contrast these predictions with those of the director
model throughout, and at the end with the experimental data
that presently exist.

FREE ENERGY, ORDER PARAMETER, AND
TEMPERATURE-CHIRALITY PHASE DIAGRAM:

REVIEW OF KNOWN RESULTS

We take, as usual, the order parameterQab to be the an-
isotropic part of the dielectric tensor, which we represent as
f5g

QabsrWd =1
−

1
Î6

QsrWd +
1
Î2

P1srWd
1
Î2

P2srWd
1
Î2

RxsrWd

1
Î2

P2srWd −
1
Î6

QsrWd −
1
Î2

P1srWd
1
Î2

RysrWd

1
Î2

RxsrWd
1
Î2

RysrWd
2
Î6

QsrWd
2 . s2d

In Landau theory the free energy density is expanded as a
power series in this order parameter, which to fourth order,
and in the one-elastic-constant approximation, looks like

f =
1

2
AQabQba +

1

2
LQab,gQba,g − 2Lq0«abgQamQmb,g

−Î2

3
BQabQbgQga +

1

4
CsQabQbad2. s3d

Here, as usual, the coefficientA is assumed to have a linear

temperature dependence, A=A0(T−T*), while
A0, T* , L , q0, B, andC are assumed to be constant. The free
energy for the helicoidal structure is obtained by substituting
Q(rW)=Q0, P1=P0cos(2q0z+f), andP2=P0sin(2q0z+f) into
Eqs. s2d and s3d, whereQ0 and P0 are stemperature depen-
dentd constants andf is an arbitrary phase angle.P0 may be
seen to be a measure of how well the molecules are aligned
along the local director that is perpendicular to the helix and
whose direction changes as one moves along thez direction.
Q0, which is invariably negative, is a measure of how well
the molecules pointaway from the helical axis. If the cho-
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lesteric structure were locally uniaxial, then the parameters
P0 andQ0 would be related byP0

2=3Q0
2. When there is twist,

however, there is localbiaxiality and this relationship does
not hold fsee Eq.s6d belowg.

It is useful to cast Eq.s3d into dimensionless form by
scaling out a factor ofB/C from Qab and a factor ofB4/C3

from f. In this manner the dimensionless free energy density
for the helicoidal structure in equilibrium is found to be

feq=
1

2
tsQ0

2 + P0
2d +

1

4
sQ0

2 + P0
2d2 −

1

3
Q0

3 + P0
2Q0 −

1

2
k2P0

2.

s4d

In the above a reduced temperaturet;AC/B2 and a reduced
chirality parameterk;2,q0 are defined, where,;ÎLC/B.
Minimizing this expression with respect to its two order pa-
rameters yields

tQ0 + Q0
3 + P0

2Q0 − Q0
2 + P0

2 = 0 s5ad

and

P0st + P0
2 + Q0

2 + 2Q0 − k2d = 0. s5bd

Eliminating the temperature between these two equations
shows that the relationship

P0
2 = Q0s3Q0 − k2d s6d

is always valid. Equations6d may in turn be substituted back
into Eq. s5d to obtain an expression that may be solved to
give the temperature dependence of the order parameterQ0.
In this manner we find

Q0st,kd =
1

8
s− 2 +k2 − Îk4 + 12k2 − 16t + 4d. s7d

Then Eq.s7d may be used with Eq.s6d to obtain the tempera-
ture dependence ofP0.

As was first noticed by Brazovskii and Dmetrievf7g, a
careful examination of the free energy expressions4d reveals
that the transition from the helicoidal cholesteric phase to the
isotropic phase becomes second order forkù2 and takes
place at a temperature

tc = k2 sk2 ù 2d. s8d

If k2,2, the transition is first order and takes place at a
temperature

tc =
1

9
+

1

2
k2 +

Î2

36
s2 + 3k2d3/2 sk2 , 2d. s9d

Figure 2 shows the phase diagram for the isotropic-
cholesteric transition, including the tricritical point where
this changeover takes place.

Defining «= tc− t, the distance in temperature from the
transition, gives more useful expressions for the temperature
variations of the order parameterQ0:

Q0 =
1

8
fk2 − 2 −Îsk2 − 2d2 + 16«g sk2 ù 2d, s10d

Q0 =
1

8
Fk2 − 2 −Îk4 + 4k2 +

20

9
+ 16« −

2

9
s6k2 + 4d3/2G

sk2 , 2d. s11d

The temperature behavior ofP0 can then be obtained through
use of s6d. From these equations we can see that at the
tricritical point sk2=2dQ0=−1

2«1/2 and P0<«1/4. Thus P0 is
seen to be the primary order parameter with the usual mean
field tricritical exponentb= 1

4, while Q0 is seen to be a sec-
ondary order parameter. Likewise, along the line of critical
points (k2.2dP0 has the usual mean field critical exponent
b= 1

2 whereasQ0 varies linearly with«.
After further consideration Brazovskii and Dmetrievf7g

realized that this tricritical point and line of second order
transitions would not actually be reached because at chirali-
ties of k,1 and beyond multiply periodic structures, which
today are called the “blue phases”f4g, would intervene. That
is, although the cholesteric liquid crystal may act as though it
is approaching a second order transition to the isotropic
phase, it will undergo a first order transition to one of the
blue phases before it reaches the hypothetical second order
transition. The calculations of the fluctuations presented here
are still useful up to the point that a blue phase is encoun-
tered; indeed there are reasons for believing that these fluc-
tuations may actually play a dynamic role in the creation of
the blue phases. Also, as we shall show in a separate paper,
in certain circumstances the application of a large electric
field can quench the blue phases and a true second order
transition can be reached. Therefore, for all these reasons, the
calculation of the fluctuations at the approach to the
cholesteric-isotropic transition are of more than just aca-
demic interest and so we proceed.

ORDER-PARAMETER FLUCTUATIONS:
PRESENT RESULTS

Now that the local minimum of the free energy has been
found we need to express the free energy to second order in
fluctuations about this minimum. This analysis is facilitated

FIG. 2. Temperature vs chirality phase diagram for the
cholesteric-isotropic transition. The solidsdashedd line represents a
first ssecondd order transition.
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by switching representations from one where the coordinate
axis are fixed in space, as in Eq.s2d, to one in which the
reference axes rotate in the same way as does the helix, so
that the unperturbed structure always appears uniform. Ac-
cordingly we define

Qsr d = Q0 + dQsr d,

Pisr d = P0 + dPisr d,

P'sr d = 0 +dP'sr d,

R1sr d = 0 +dR1sr d,

R2sr d = 0 +dR2sr d. s12d

Here we see thatdQ anddPi are fluctuations in themagni-
tudesof the two measures of alignment,Q and P, respec-
tively. The quantitydP' is a local fluctuation in thephasef
of the helix or, equivalently, a small rotation of the local
director perpendicular to the helix; it is, in other words, a
twist mode. Finally,dR1 and dR2 are both umbrella modes.
There are two umbrella modes because the local biaxiality
implies that there are two directors:R1, the primary one
pointing along the alignment direction of the long axes of the
molecules, and a secondary one,R2, perpendicular to the first
and also to the helical axis. Each of these directors can tilt, or
develop a conical structure, as shown in Fig. 3, and so there
are two independent modes.

As mentioned earlier, we will only be considering the case
where the scattering wave vectorq is along thez direction.
Accordingly, dQab will be considered to be a function ofz
only and can then be expressed in terms of its Fourier coef-
ficients as

dQabszd = o
q

dQ̃abskdeikz. s13d

When Eq.s13d is entered into the free energy densitys3d and
then this is integrated over all space, the free energy expres-

sion that results to second order indQ̃ab is

DFq =
1

2
st + 3Q0

2 + P0
2 − 2Q0 + ,2k2dudQ̃skdu2 +

1

2
st + Q0

2

+ 3P0
2 + 2Q0 − k2 + ,2k2dudP̃iskdu2 +

1

2
st + Q0

2 + P0
2

+ 2Q0 − k2 + ,2k2dudP̃'skdu2 +
1

2
St + Q0

2 + P0
2 − Q0

− Î3P0 −
1

4
k2 + ,2k2DudR̃1skdu2 +

1

2
St + Q0

2 + P0
2 − Q0

+ Î3P0 −
1

4
k2 + ,2k2DudR̃2skdu2 +

1

2
s2Q0P0 + 2P0d

3fdQ̃skddP̃i
*skd + dQ̃*skddP̃iskdg. s14d

The equipartition theorem may then be employed to find the
thermal averages of the fluctuations. The coefficients appear-
ing in Eq. s14d may be reexpressed using Eqs.s5d and s6d
previously developed and thus we obtain

kudP̃'skdu2l =
kBT

,2k2 , s15d

kudR̃1,2skdu2l =
kBT

− 3Q0 7 Î3Q0s3Q0 − k2d +
3

4
k2 + ,2k2

, s16d

kudQ̃skdu2l =
kBTf2Q0s3Q0 − k2d + ,2k2g

2Q0s3Q0 − k2dsk2 − 8Q0 − 2d + f8Q0
2 − 2sk2 + 2dQ0 + k2g,2k2 + ,4k4 , s17d

FIG. 3. Schematic representation ofsad the unperturbed choles-
teric, sbd a primary umbrella modeR1, andscd a secondary umbrella
modeR2. The primary director is parallel to the long axis of the
parallelepiped; the secondary director is parallel to the intermediate
axis.
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kudP̃iskdu2l =
kBTf2Q0sQ0 − 2d + k2 + ,2k2g

2Q0s3Q0 − k2dsk2 − 8Q0 − 2d + f8Q0
2 − 2sk2 + 2dQ0 + k2g,2k2 + ,4k4 . s18d

The fluctuations ofP' are, as in the director-mode picture,
inverse proportional tok2 and relatively insensitive to tem-
perature. The fluctuations inR1, the primary umbrella mode,
are likewise as given by the director model if one is far from
the cholesteric-isotropic transition and/or the chiralityk is
small. That is, the expansion of Eq.s16d gives

kudR̃1skdu2l <
kBT

,2q0
2 + ,2k2 s− 3Q0 @ k2d, s19d

which is equivalent to Eq.s1bd in the one-elastic-constant
case. If, however, the cholesteric-isotropic transition is
nearby and/or the chiralityk is large, then the situation is
quite different: the primary umbrella fluctuationsdecrease
substantially as the temperature is increased. The secondary
umbrella mode has just the opposite behavior: it is normally
very weak but becomes much larger when cholesteric-
isotropic transition is approached and/or the chiralityk is
large. We show these behaviors, as well as that for all of the
other modes, in Fig. 4 for a chirality ofk=0.7, which has a
first order phase transition and in Fig. 5 for a chirality ofk
=1.8, which has a second order phase transition. Here we
plot kBT divided by each average squared fluctuationevalu-
ated at its peak (k=0d.

Although they are not the focus of the present study, the
results for the isotropic phase are also included in Figs. 4 and
5 for the sake of completeness. These are easily obtained by
applying the equipartition theorem to Eq.s14d after first set-
ting Q0 and P0 equal to zero. Calculations of this sort were
first done by de Gennesf8g and then elaborated on by many
others in the tensor fomulation including especially Horn-
reich and Shtrikmanf9g, who also discussed scattering from
the blue phases, but not from the cholesteric phase itself.

Recently Longaet al. f10g have considered what happens in
the isotropic phase when the harmonic approximation breaks
down and coupling between the five, formerly independent,
modes ensues; this is their model for the transition from the
ordinary isotropic phase to the amorphous phase known as
BPIII. It would be interesting to see if mode coupling would
also modify the results presented here for the cholesteric
phase.

From Eq.s18d it may easily be seen thatPi plays the role
of the “soft mode” in that its fluctuations diverge when the
second transition is approached: askBT/4« at the tricritical
point sk2=2d and askBT/2« along the line of critical points
sk2.2d. That theamplitude as well as the phaseof the pri-
mary order parameter should diverge suggests that defects
may eventually play an important role as the transition is
approached. The defects most commonly seen in cholesterics
are the l and t singularities, whose cores resemble the
double-twisted structures found in the blue phases. Perhaps
then there is a dynamical aspect to the formation of the blue
phases in addition to the energetics of static structures that
has been considered up to now.

TheQ mode fluctuationsfEq. s17dg also grow as the tran-
sition is approached, askBT/ f16«+sk2−2d2g1/2, but as may
be seen from this expression it diverges at the tricritical point
only sk2=2d. The critical exponent of12 that it has at the
tricritical point is another indication thatQ is a secondary
order parameter.

It is important to realize that although the fluctuations of
all five modes peak atk=0, these peaks are actually sepa-
rated in reciprocal space. Thus theP' andPi modes peak at
q= ±2q0, the umbrella modesR1 andR2 at q= ±q0, and theQ
mode atq=0. This separation can help somewhat in the ex-
perimental detection of the different modes, although there is
still considerable overlap between some of the modes. This is

FIG. 4. Inverse of the average squared fluctuations of the order
parameter components for a chiralitysk=0.7d having a first order
transition.

FIG. 5. Inverse of the average squared fluctuations of the order
parameter components for a chiralitysk=1.8d having a second or-
der transition.
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demonstrated in Fig. 6 in which we plot the mean-squared
fluctuations vsq for a chirality of k=0.7 and three different
temperatures. Note that theR2 modes atq= ±q0 overlap to
such an extent that they are never resolved as two separate
peaks.

THE LOW CHIRALITY LIMIT: COMPARISON
TO EXPERIMENT

The experiment of Borsaliet al. f6g was performed on a
nematic doped with a small amount of chiral material, giving
a cholesteric with a pitch of about 10µm. Unfortunately, a
cholesteric with a pitch this large does not really display
many of the characteristic features that would be found in a
more typical material having a pitch comparable to the wave-
length of light. The separation of the mode peaks in recipro-
cal space, for example, is not at all evident; the smallestq2 in
the experiment is about three orders of magnitude larger than
q0

2, so the distinction betweenq andk is irrelevant. Nonethe-
less, the analysis we have presented here should still apply to
the experiment; we have only to take the limit wherek or q0
is zero. In this limit, and to first order ink2, we have forkBT
divided byeach average squared fluctuation

kBT

kudR̃1skdu2l
< ,2k2, s20d

kBT

kudR̃2skdu2l
< − 6Q0 + ,2k2, s21d

kBT

kudQ̃skdu2l
< − 2s4Q0 + 1d +

s4Q0
2 + 2Q0 + 1d

3Q0
2 ,2k2,

s22d

kBT

kudP̃iskdu2l
<

− 6Q0s4Q0 + 1d
Q0 − 2

+
s4Q0

2 + 2Q0 + 7d
sQ0 − 2d2 ,2k2.

s23d

So in this limit we see from Eq.s20d that the primary um-
brella mode is indistinguishable from the twist mode, which
is still given by Eq.s15d. The second mode identified by
Borsali et al. must therefore be one of the other modessas
must be the third “fast mode” discussed briefly by themd.
The only alternative, the one actually considered by Borsali
et al., is that the productK3q0

2 staysfinite as q0 becomes
negligible, which would require the bend elastic constant to
become anomalously large for no apparent reason.

Most likely the second mode that Borsaliet al. have dis-
covered is thePi mode. We base this upon the fact that it is
this mode that lies closest to the twist and primary umbrella
modes for the most likely ranges of parameters. In the range
of −1,Q0,−1/3 sthe smallest negative value allowed for
k=0d the Pi mode is always the mode that is closest to the
twist and primary umbrella modes. For an order parameter of
Q0=−1 theQ, Pi, andR2 modes are coincident; they have
the same slopes and the same intercept of 6. This intercept
places these modes considerably farther away from the twist
and primary umbrella modes than what is found in the ex-
periment. In Fig. 7 we show a plot of the inverses of the
various modes versus,2k2 for a Q0 value of −0.4, which
seems to correspond much more to the experimental situa-
tion. It is not possible to give an exact comparison between
our results and the experimental data, however, because what

FIG. 6. The average squared fluctuations of the order parameter
components for a chiralitysk=0.7d. The temperature from the tran-
sition is «= sad 0.2, sbd 0.1, andscd 0.
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we calculate is related to the intensities of light scattering
whereas the experiment has measured relaxation rates, which
are related to the intensity autocorrelation function. The lat-
ter are scaled to the former by combinations ofsunknownd
viscosity coefficients, but this probably should not change
the relative importance of the different modes by very much.
Also, the value of the length, is not known, but if we as-
sume that it is 200 Å then the range of the,2k2 shown in the
figure corresponds to the experiment.

If Fig. 7 is an accurate guide, then the third “fast mode”
detected by Borsaliet al. is probably theQ mode. More

measurements of the modes and theirk2 slopes at different
temperatures should provide significant new information to
enable the more positive identification of each mode.

CONCLUSION

The tensor order-parameter description of fluctuations in a
cholesteric liquid crystal complements and extends the
director-model theory. It shows that far from the transition to
the isotropic phase the most dominant modes by far are the
twist and umbrella modes and that their temperature depen-
dences are approximately as given by the director model. As
the isotropic phase is approached, however, the temperature
dependences of the twist and umbrella modes begin to differ
substantially from the predictions of the director model. At
the same time the strengths of the other three fluctuation
modes, not included in the director model, grow substan-
tially. There may be some interesting physics to be learned
by measuring all five of these modes, not just at the transi-
tion to the isotropic phase but also at transitions to the blue
phases or even at transitions to smectic liquid crystals or
other lower temperature phases. To some extent the five
modes may be singled out experimentally by virtue of their
different angular dependences, although this may prove dif-
ficult because they are so broad. In principle, polarization
selection of incoming and scattered light, using both linear
and circular polarizers and analyzers, can also be used to
separate the modes to some extent at least, but multiple scat-
tering may complicate this method. Finally, as was done in
f6g, the modes may be resolved in the time domain especially
if they have very different relaxation rates. A combination of
all these methods may be needed for an unambiguous eluci-
dation.
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